
The Second-Order Term in the Asymptotic 
Expansion of B(x) 

By Daniel Shanks 

1. Introduction. It is a well-known theorem of Landau [1], [2], [3], [4] that if 
B(x) is the number of integers ? x that are expressible in the form u2 + v2, then 

( 1 ) 
B~~~~~~(x) 

bx 
bx 

where 

(2) b = [2H(1 - 2)] 
q 

the product being taken over all primes q of the form 4m + 3. Empirically, the ratio 
B(x)\Vlog x/bx approaches unity slowly from above in very much the same way 
in which lr(x) log x/x approaches unity from above. 

Ramanujan [5] independently asserted that 

(3) B(x) = K J $g - ?u +0 (log x) 

where K (his notation) is also given by the right side of (2). Since 
I du Kx F11 /1\1 

(4) K logu - Vlog x L 2 log x + ?log2x)j' 
X du 

the ratio a \/etioU +Vlog x/x also approaches unity slowly from above, and Rama- 

nujan's assertion at first seems plausible. In the analogous prime number theorem it is 

well known that f du/log u appro -tes ir(x) much better than x/log x does. 

G. H. Hardy [3, p. 9, p. 63] stated, however, that Ramanujan's "integral has no 
advantage, as an approximation, -er the simpler function Kx/V/log x." Now 
empirically, as we shall see, the irtegral is definitely a closer approximation to 
B(x). One therefore first assumes that Hardy did not mean to be taken literally 
here, and that he merely meant that the second-order term in (4) is not the correct 
one; specifically, that the coefficient 1 is inaccurate. However, upon examination of 
the original paper [6] of Hardy's student, Miss G. K. Stanley, it was found that 
she states, in effect, that the correct second-order coefficient is negative. If this 
were true, then Hardy's remark would be entirely unobjectionable, since Ramanu- 
jan's integral (4) would, in fact, be less accurate than the leading term. Apparently 
Hardy believed this to be the case, for later he writes [3, p. 19] "The integral is 
better replaced by the simpler function * - - ." 

But that is in such conflict with the actual behavior of B(x) that it became 
apparent that there must be an error in [6]. In fact, there are several errors, and 
these nullify the proof there that Ramanujan's second term is wrong. Nonetheless, 
it is wrong, as we shall verify. 
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In the present paper [8] we will correct the several errors in [6], and show how 
to accurately compute the first two coefficients in 

(5) B(x) = -g [1 + lox + ? (o2)]. 

We then give a comparison of B(x) with the right sides of (1), (3), and (5). Finally, 
we prove some related theorems, and, associated with these, we note a simple, 
elementary argument that Ramanujan could have used (since it does not involve 
Cauchy's Theorem) to convince himself that his equation (3) was highly improb- 
able. 

2. Analysis of the Errors in [6]. Stanley uses the same analysis as in Landau's 
original paper [1]. Let b- = 1 if n = u2 + v2 and b- = 0 otherwise. Then B(x) = 

n<x b,n . Let f(s) = Z?=1 ban '. Landau proved that f(s) has a branch point at 
s = 1, and a convergent series: 

f(s) aiS12 
(6) 2 Vs ++ a, _ +a2 ( s)+ 

He further proved, for all it, that 

(7) bn log n = f(s) ds + ?o( m) 

where 0 < 0 < 1. 
From these equations Stanley deduces [6, p. 235] the result: 

z b x [a r(4) (a, - a)r(3 x ] (8) B(x) = E b [(l x)112 + ( o )3/4 + ?o((I)7/4)]. 

There is a rather obvious typographical error here but we may correct it without 
further discussion since no erroneous conclusions were based upon it. The r(3) 
should read r(q). In the analysis [6, p. 234] leading to equation (8) there are two 
other typographical errors. Again, one of these may be changed without discussion, 
namely, change a, = 4a/\/7r to a1 = 4a1/\/7r. 

But the other error is important and must be discussed. It reads: 
i 1SX 

(9) f x(1 S)12 ds = r(m + 4) X +0 ( X Jo ~~~~~~~~(log X)?I (log x)?/ 

where a > 0" 
It is clear that there is some misprint here, and in a subsequent corrigendum [7] 
Stanley modified this as follows: change n + 4 to m + 4, n + 1 to m + 3, and 
delete "where a > O." But though this now reads consistently, it does not suffice 
mathematically. It implies, for m = 0, that the error in integrating the leading 
term in (6) may affect our second-order term by an unknown amount. And since 
this is the term in question, an error of that order is not acceptable. However, it is 
easy to prove that 

f x"(1 - 
S)m ~112 ds = T'(rn + 2 (log X)m+l/2 

+ 0 
(log XM+1) 
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for a a > 0. This was perhaps the original form of (9), prior to printing, and it 

suffices mathematically for all terms of any order 1 Thus (8), when cor- 
(log X) r 

rected, namely, 

(8') B(x) = x [l x)112 + ( - x)3/2)] + ?5/2) 
7r (og X112 (log X)112 _ log X512 

is true, and should lead to the correct expansion (5). 
But here Stanley makes two nontypographical errors and obtains 

(10 "a, log 2 NW2 log N 1 2 ( -1) n log(2n?+1) ) a = + 2 i+ ENZ-2 2 7r 2n + 1 

where N is a prime of the form 4m + 3, or a power or product of such primes, and 
-y is Euler's constant." From (10) she concludes that al/a < 0, and therefore that 
Ramanujan's (3) is false. 

Now there are two sign errors in (10). One should replace al/a by -a1/a and 
log 2/2 by -log 2/2. The first error probably came about by computing al/a as 
the logarithmic derivative of f(s) S2 V/S - 1 for s = 1. But, from the definition 
of a1 in (6), we have 

f(s) s 2 1 = a+a,(1-s) + , 

and due to the change of sign, with (1 - s) here, instead of the expected (s - 1), 
this derivative is really - a,/a. The second error was made in taking the generating 
function as 

(11) f(s) = - 1/) 1 1(i2 1 ) {(sLs 12 

when it really is 

(11') f(s) = (1 - 1 )11 (kI t11q) {1(s)L(s)}112. 

Here (s) and L(s) are the well-known zeta and L functions: 
00 00 

D(s) = Zn8 L(s) = E (-i)j (2k + 1) s. 
1 0 

With (11) thus corrected, and rewriting the corrected (10) in a form more 
suitable to computation, we obtain from (8') and (5) the following formula for c: 

1 a, 1 log 2 y L'(1) 1 d 1 ' 

(12) C = ( -1)= + -log _ 

( ) ~2 (a ) 2 + 4 4 4L(l) 4 ds 1 - (1q-2)|= 

3. Computation of b and c. The logarithmic derivative L'(1)/L(1) may be 
expressed in terms of the so-called lemniscate constant, co, as follows: 

(13) L'(1) = log [(;) fl 

This formula (or its equivalent) appears to have been discovered independently 
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at least five times, by Berger [9], Lerch [10], de S6guier [11], Landau [12], and the 
author. Using (13), the first four terms on the right in (12) may be combined into 

2| -log Co2)] 

Since Gauss [13] computed log X to many places, and log ir, log 2, and y are well- 
knowin, we easily obtain 

(14) [1 - log (- )] = 0.4675804827 

for this combination. 
The slowly convergent remaining term in (12), and the related product in (2), 

may be transformed by a technique of some general interest, since it is applicable 
to a whole class of related infinite products. For s > 2 we may easily verify that 

(15) (u 1 1 = (2s)(- )48 
q28 L(2s) q 1 - 

Hence, by recursion, we may transform (2) into the very rapidly converging prod- 
uct: 

1 ~~(2 k) (1 -2.2k) (1/2)k+l 

(16) b{ L(2 k) 

From tables of L(s) and c(s) (1 -2-8), say in [14], we thus easily obtain 

(17) b = 0.764223654. 

(A transformation similar to (15) is possible when q ranges over other arithmetic 
progressions [15].) 

For the last term on the right side of (12) it is more convenient to apply the 
transformation (15) only twice. We obtain 

d log II 1 (D (2) L'(2) log 2 .-log H 28 =L2 + 

(18) 
d -,L2 

+ '(4) L'(4) log 2 log q 

Th l r c) L(4) 15 
) 2q q8- i 

The last term here converges very rapidly to -0.0003356406. The quantities D'(n)/ 
t(n) have recently been computed by Rosser and Schoenfeld [16], but the cor- 
responding logarithmic derivatives of L(n) do not appear to be tabulated. The 
series 

(19) L'(n) = log 3 log 5 + 

converge slowly for n = 2 and n = 4, but are of a type whose convergence may be 
accelerated by the e1- nonlinear transformation [17]. Using this transformation on 
the partial sums of (19) w1-e obtain 

L(2) = 0.089065284 and L(4) - 0.011699896. 
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Then 

d log 7 = -0.457472706, 
d l- 1q-2s 8~=1 

and finally 
(20) c = 0.581948659. 

4. A Table and Three Comparisons. From (5), (17), and (20) we have 

(5') B(x) = 0.764223654 x 0.581948659 + O ( ) 

and since c 5 ', (3) is false. However, contrary to the remarks of Hardy and 
Stanley, since c is positive, and nearly 2, we should expect Ramanujan's integral, 

x 

b f (log U)Y112du, to approximate B(x) much better than Landau's bx(log X)-112 

does. In Table 1 we show that this is indeed the case. 
In this table we tabulate B(x) for x = 2, 4, ... , 2k, , 22 = 67,108,864. 

These counts were computed by Larry P. Schmid on an IBM 7090 [15]. We also 
tabulate Landau's function and the second-order approximation: 

bx 
b~~~~~~~~~~~~~~~~~~~~~~~~lgx lo (21) l (x) _ bx [1 + ]. j 

N/1~09 ~x _Vfo`gx l Og X_ 

TABLE 1 

x B(x) 1(x) r(x) s(x) B(X)/l(X) B(x)/r(x) B(x)/s(x) 

2 2 2 2 3 1.0894 1.2200 0.5922 
22 3 3 3 4 1.1555 0.9583 0.8139 
23 5 4 5 5 1.1793 0.9197 0.9214 
24 9 7 9 9 1.2256 0.9635 1.0130 
25 16 13 16 15 1.2180 0.9858 1.0429 
26 29 24 29 27 1.2092 1.0103 1.0607 
27 54 44 52 50 1.2160 1.0453 1.0858 
28 97 83 94 92 1.1675 1.0273 1.0566 
29 180 157 175 171 1.1490 1.0298 1.0510 
210 337 297 327 322 1.1338 1.0310 1.0459 
211 633 567 616 610 1.1168 1.0272 1.0376 
212 1197 1085 1169 1161 1.1029 1.0237 1.0307 
213 2280 2086 2231 2220 1.0932 1.0222 1.0269 
214 4357 4019 4273 4260 1.0840 1.0196 1.0227 
215 8363 7766 8215 8201 1.0768 1.0180 1.0198 
216 16096 15039 15832 15828 1.0703 1.0167 1.0169 
217 31064 29181 30628 30622 1.0645 1.0142 1.0144 
218 60108 56717 59345 59362 1.0598 1.0129 1.0126 
219 116555 110408 115208 115287 1.0557 1.0117 1.0110 
220 226419 215225 224040 224260 1.0520 1.0106 1.0096 
221 440616 420076 436343 436871 1.0489 1.0098 1.0086 
222 858696 820836 850981 852161 1.0461 1.0091 1.0077 
223 1675603 1605587 1661663 1664196 1.0436 1.0084 1.0069 
224 3273643 3143562 3248231 3253531 1.0414 1.0078 1.0062 
225 6402706 6160098 6356076 6366973 1.0394 1.0073 1.0056 
226 12534812 12080946 12448925 12471056 1.0376 1.0069 1.0051 
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These are easily computed from (17) and (20) and are rounded to the nearest 
integer. 

Ramanuj an's function, 

(22) r(x) =b f du 

which was computed by the method indicated in the appendix below, was also 
rounded to the nearest integer. 

Finally, Table 1 lists the ratios of B (x) to the three approximation functions 
to 4D. All three of these functions underestimate B(x). The results in Table 1 are 
consistent with the foregoing analysis. Ramanujan's r(x) is a substantially better 
approximation than Landau's 1(x). But since 

B(x)/l(x)- 1 
B(x)/r(x) -1 

approaches a positive limit as x -> oo, r(x) has an error of the same order. 
The error in s(x) is about twice that of r(x) for x % 200, and about equal to that 

of r (x) for x ~ 200,000. Henceforth s(x) is the best of the three. This temporary 
success of r (x) is, of course, due to the fact that s(x) ignores the third and higher 
order terms; and while these are surely not correctly represented by r(x), the third 
term, at least, is of the correct sign. 

In concluding this section we would point out the rather obvious fact that while 
[ 

~~~~~~~~~~~log x +log2 x + log3x+** bx_ + c + d + e 

is correct asymptotically, it is not very accurate for finite x. Two terms give us only 
2 % accuracy at x ~ 70. 106, and the higher coefficients, d, e, etc., can be calculated 

rx 

oiily with considerable labor. In contrast, f du/log u agrees with 7r(x) to about 

ToWW at x ~ 70. 106. An unsolved problem of interest is to find a replacement for 
the incorrect r(x), that could be computed without undue difficulty by a convergent 

/x 
process, and which would be accurate to 0 1O g) 

for all nm. 

5. Odds and Evens and an Elementary Argument. The foregoing disproof 
of (3) is based on Landau's analysis, and this is based upon Cauchy's Theorem. 
It was certainly not available to Ramanujan in 1913, since, according to Hardy 
[3, p. 43], "he did not know Cauchy's Theorem." We raise the question whether we 
can give an eleinentary disproof of (3), i.e., one not based on Cauchy's Theorem. 
And we reply that there is a simple elementary argument which makes (3) highiy 
unlikely (although it doesn't disprove it). Further, this argument arises in a very 
natural way as soon as we begin to compute B(x). 

An even number 2n is expressible in the form u2 + v2 if and only if n is, since 

(23) 2n= u2+ v n= (U+ v)2+(U-v)2 



SECOND-ORDER TERM IN ASYMPTOTIC EXPANSION OF B(x) 81 

Consider 

(24) B(x) = 01(x) + El (x) 

where 01(x) counts the odd numbers of this form and E1 (x) counts the 
even numbers. In view of (23) we thus have 

(25) El (x) = B 

Hence, to compute B (x), it suffices to compute 01(x), and to obtain E1 (x) and 
B(x) by the recursions: 

El(2x) B(x), 
(26) 

B(2x) = El(2x) + 01(2x). 

Since 

(27) O1(x) r (x), 

as we shall see, this means a saving in computation of 50%. (This is, in fact, the 
way in which the B(x) of Table 1 was computed. See Table 2.) 

The generating function f(s) for B (x), given above by (11'), may also be written 

(28) f(s) =1 H , H _ 
28 1 - p- 1-2. 

where the p's are the primes of the form 4m + 1 and the q's are the primes of the 
form 4m + 3. Correspondingly, that for O1(x) is the very similar 

1 _ _ _ _ _ _ 

(29) f'(s) = fi _ _, 1 2, 

ald just as (28) leads to 

B(x) 
bx 

/log x0 

so (29) leads to 
Oi(x) lbx 

Ol(z) 2b . 

Now, by whatever (fallacious) reasoning Ramanujan obtained (3) from (28), 
it seems likely that he would have similarly obtained 

(o0x)? = 2 K Vlog 
a + (log 4 

from (29). (This would again be in analogy with prime number theory, since the 
number of primes in the arithmetic progressions 4m + 1 or 4m + 3, say, are both 

given by f du/log u + 0(4 ) for any m). But (3) and (30) quickly lead 

to a conitradiction. Assume that 
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(31) 0(x) = 1 + + 
2 

i/1og x L ox klog2x) 
Together with 

(32) B(x) = 1 + l +0 ( 1 

l/~og ~x L log x \dog2 Xj 
and (24) we obtain 

(33) ~ Ei(x) (b'-b)x + (bc -b'c') x 
______ 

l33)og Ex (log x)312 lo g/2x 

But from (25) and (32) we also have 

(34) E 
= 

(x) [1? c __ 

lI = og + x- log 2 log x - log 2 \log2 X)]j 

and since 

(34a) 
log+2/Vlog-log2og x log2 x 

by comparing (33) and (34) we obtain 

(35) b' =b 

and 

(36) c =c - log 2. 

Now (35) is consistent with (27). But (36) indicates that c and c' cannot both 
equal 2. Therefore at least one of (3) and (30) must be false. But the generating 
functions f(s) in (28) and f'(s) in (29) are very similar. Neither could be said to 
be more "fundamental" in any reasonable sense. There is no more reason for (3) 
to be true than for (30) to be true. By the Principle of Sufficient Reason it would be 
most likely, therefore, if neither were true. And this, as we now know, is the case. 

Carrying out the analysis of section 2 with the generating function f'(s) we 
obtain and record 

THEOREM 1. 

(37) O (x)= l L lo +0 (log2X)] 

and 

(38) Ei(x) = 2x [ + c +O (lo 2)] 
N/ -og x~ l og x 

where 

1 b = 0.382111827, 

(39) c = c - 1 log 2 = 0.235375069, 

Cl/ = C + 2log 2 = 0.928522249. 
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It follows that 

(40) El(x) - 0 (x) Eo E1(x). 

(The fact that the simple equation (40) is free of the constants b and c is suggestive 
of the existence of -an elementary theory such as we have discussed above.) 

In contrast with the differing second-order coefficients in (39), consider now a 
different partition of the integers n = u2 + v2. Let B4(x) be the number of integers 
? x of the form u2 + 4v2. These integers constitute the subset of the integers n = 
u2 + V2 for which n = 4m or n = 4m + 1. Correspondingly, B(x) -B4(x) counts 
those of the form 4m + 2. We then have 

THEOREM 2. 

(41) B4(X)= lbX 1 + c 
+ 0 

log2 x) Vl/o-gx L log x \lgxj 

(42) B(x)-B4(X) = + [ C 
+? (o 

V/log XL+ log x 109og2 x/ 

Proof. The integers counted by B(x) -B4(x) are those of the form 

n = (2u + 1)2 + (2v + 1)2 = 4m + 2. 

For such an n, 

n/2 = (u - V)2 + (U + V + 1)2 = 2m + 1. 

Hence, 

(43) B(x) - B4(X) = 01 ( 

and from (37) and (34a) we thus obtain (42). Then from (5) we obtain (41). 
By elementary means-that is, by algebraic and arithmetic calculations, but no 

new analysis-the reader may obtain, if he wishes, the following results which are 
more precise than those of equations (40) and (41). 

(40a) O,(x) = Ei(x) [1 _ 1.92914889 - 0(log2 X) 

(41a) B4(x) = 4 B(x) 1 + 0g2 + 1log25744 + 0(log2 X)] 4 
(lOg2 X)2 (log2 X)3 

Let us also consider the subset of the integers n = u + 4v consisting of those 
for which the largest power of 2 dividing n is an even power. That is, n equals 4k 
times an odd number for k = 0, 1, 2 * . . . Let B4'(x) be the number of such integers 
< x. Now we have the generating function: 

1 1 1 
(44) f4AS) = 12i2 p lp q 1 q-2s 

and from this we derive 
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THEOREM 3. 

(45) B4'(x) = x 1 + + 10g2 X l/1og ~x L log x lgx/J 
where 

(46) b4' = b b = 0.509482436 

and 

(47) C4' = C log 2 = 0.466424129. 

Alternatively, we may again use such elementary computations as those in 
equations (31) - (36), this time using the relations 

04'(x) = O,(x) 

(48) B4'(x) = 04'(x) + E4'(x) 

E4'(x) = B4'(x/4). 

Similarly, we may compute E4'(x) and B4'(x) by recursion from 04'(X) = O(x). 
This is done in Table 2. Since C4, which equals 0.466424129, is even closer to 2 

than c is, we might expect 2 r(x) to be a good approximation for B4'(x). It is, in 

TABLE 2 

X |0(X)=04'(X) Ei(X) | E4/(X) B4'X) 'r(x) IB4'(X) 2 r(x) 

2 1 1 0 1 1 0.9150 
22 1 2 1 2 2 0.9583 
23 2 3 1 3 4 0.8278 
24 4 5 2 6 6 0.9635 
25 7 9 3 10 11 0.9242 
26 13 16 6 19 19 0.9929 
27 25 29 10 35 34 1.0162 
28 43 54 19 62 63 0.9849 
29 83 97 35 118 117 1.0127 
210 157 180 62 219 218 1.0050 
2"1 296 337 118 414 411 1.0077 
212 564 633 219 783 780 1.0044 
213 1083 1197 414 1497 1487 1.0067 
214 2077 2280 783 2860 2849 1.0039 
215 4006 4357 1497 5503 5477 1.0048 
216 7733 8363 2860 10593 10555 1.0036 
217 14968 16096 5503 20471 20419 1.0026 
218 29044 31064 10593 39637 39563 1.0019 
219 56447 60108 20471 76918 76805 1.0015 
220 109864 116555 39637 149501 149360 1.0009 
221 214197 226419 76918 291115 290896 1.0008 
222 418080 440616 149501 567581 567321 1.0005 
223 816907 858696 291115 1108022 1107775 1.0002 
224 1598040 1675603 567581 2165621 2165487 j 1.0001 
225 3129063 3273643 1108022 4237085 4237384 0.9999 
226 6132106 6402706 2165621 8297727 8299283 0.9998 
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fact, better than one would expect. Presumably the small errors in the second term 
are partially compensated for by small errors of opposite sign in the higher terms. 

Finally, we might mention the general problem, Bn(x), for numbers of the form 
2 2 u + nv. For indefinite forms, n < 0, and for such cases as n = 6, where the so- 

called class number exceeds unity, there are interesting complications. These will be 
discussed in a forthcoming paper, [15]. 

Appendix (The computation of r(x)). 

Ramanujan's function r(x), which is given by (22), may be transformed into 

r(x) = 2bx{f ev 2dv} 

by u = e .With log x = w the bracket becomes Dawson's integral: 
w 

F(w) = e W2 e 2 dv. 

Rosser [181 has given lOD values of F(w) for selected arguments w. He recom- 
mends Lagrange interpolation for intermediate arguments, but more accurate 

TABLE 3 

2k du 
Jk /log u 

1 2.14503760 
2 4.09644933 
3 7.11347310 
4 12.2226993 
5 21.2384587 
6 37.5592045 
7 67.6003252 
8 123.556490 
9 228.714206 

10 427.706202 
11 806.349552 
12 1530.09977 
13 2918.71994 
14 5591.49845 
15 10750.0708 
16 20716.8362 
17 40077.2671 
18 77653.3419 
19 150751.822 
20 293160.823 
21 570962.936 
22 1113523.90 
23 2174314.55 
24 4250366.94 
25 8317036.10 
26 16289636.0 
27 31931697.5 
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(and more interesting) computations utilize the Taylor series based on the nearest 
w which he tabulated. This is possible since F(w) satisfies a first-order differential 
equation: 

F'(w) = -2 wF(w) + 1. 

Thus, the coefficients in the Taylor series, cn(w) = ! d(F , may be readily 

obtained by recursion from F(w) [18, p. 179]: 

Cn+2(w) = - + 2 {Wcn+1(w) + Cn(W)}. 

2k 

In Table 3 we tabulate f (log u)-/2 du to 9 significant figures for future reference. 

From these values r(x) is obtained by (22). 
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